Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612576

RESUMO

In a recent stereotactic body radiation therapy animal model, radiation pneumonitis and radiation pulmonary fibrosis were observed at around 2 and 6 weeks, respectively. However, the molecular signature of this model remains unclear. This study aimed to examine the molecular characteristics at these two stages using RNA-seq analysis. Transcriptomic profiling revealed distinct transcriptional patterns for each stage. Inflammatory response and immune cell activation were involved in both stages. Cell cycle processes and response to type II interferons were observed during the inflammation stage. Extracellular matrix organization and immunoglobulin production were noted during the fibrosis stage. To investigate the impact of a 10 Gy difference on fibrosis progression, doses of 45, 55, and 65 Gy were tested. A dose of 65 Gy was selected and compared with 75 Gy. The 65 Gy dose induced inflammation and fibrosis as well as the 75 Gy dose, but with reduced lung damage, fewer inflammatory cells, and decreased collagen deposition, particularly during the inflammation stage. Transcriptomic analysis revealed significant overlap, but differences were observed and clarified in Gene Ontology and KEGG pathway analysis, potentially influenced by changes in interferon-gamma-mediated lipid metabolism. This suggests the suitability of 65 Gy for future preclinical basic and pharmaceutical research connected with radiation-induced lung injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Animais , Lesão Pulmonar/genética , Fibrose Pulmonar/genética , Inflamação , Interferon gama/genética , Pulmão , Doses de Radiação
2.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547066

RESUMO

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Assuntos
Bexiga Urinária , Infecções Urinárias , Animais , Humanos , Bexiga Urinária/cirurgia , Urodinâmica/fisiologia , Próteses e Implantes , Cistectomia
3.
Sci Rep ; 14(1): 7496, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553592

RESUMO

Intracranial arterial dolichoectasia (IADE) is associated with the interaction of hypertension and inflammation, and microcurrent can be effective in hypertension. Therefore, this study aimed to investigate the therapeutic effect of microcurrent electrical stimulation in a mouse IADE model. This study randomly categorized 20 mice into five groups: group 1-C (healthy control), group 2-D (IADE model), group 3-M + D (microcurrent administration before nephrectomy and until brain surgery), group 4-D + M (microcurrent administration for 4 weeks following brain surgery), and group 5-M (microcurrent administration for 4 weeks). Cerebral artery diameter and thickness and cerebral arterial wall extracellular matrix components were assessed. Among the five groups, group 2-D showed significantly higher cerebral arterial wall diameter (117.79 ± 17.05 µm) and proportion of collagen (42.46 ± 14.12%) and significantly lower arterial wall thickness (9.31 ± 2.26 µm) and proportion of smooth muscle cell (SMC) and elastin in the cerebral arterial wall (SMC: 38.05 ± 10.32%, elastin: 11.11 ± 6.97%). Additionally, group 4-D + M exhibited a non-significantly lower diameter (100.28 ± 25.99 µm) and higher thickness (12.82 ± 5.17 µm). Group 5-M demonstrated no evidence of toxicity in the liver and brain. The pilot study revealed that microcurrent is effective in preventing IADE development, although these beneficial effects warrant further investigation.


Assuntos
Artérias Cerebrais , Hipertensão , Animais , Camundongos , Projetos Piloto , Encéfalo , Elastina
4.
Front Aging Neurosci ; 16: 1344072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304741

RESUMO

Introduction: Alzheimer's disease (AD) poses an increasing global health challenge and is marked by gradual cognitive deterioration, memory impairment, and neuroinflammation. Innovative therapeutic approaches as non-pharmacological protocol are urgently needed with side effect risk of drugs. Microcurrent therapy, a non-invasive modality involving low-level electrical currents, has emerged as a potential solution to address AD's complex pathogenesis. This study investigates the optimal application of microcurrent therapy as a clinical protocol for AD, utilizing a comprehensive approach that integrates behavioral assessments and neuroinflammation evaluation in a mouse model of dementia. Methods and results: The results reveal that microcurrent therapy holds promise in ameliorating memory impairment and reducing neuroinflammation in AD. Behavioral assessments, including the Novel Object Recognition Test (NOR) and Radial Arm Maze Test (RAM), demonstrated improved cognitive function following microcurrent therapy. Furthermore, microcurrent therapy inhibited expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) in current-treated group. Mechanistic insights suggest that microcurrent therapy may modulate neuroinflammation through the regulation of MAPK signaling pathways. Conclusion: This study emphasizes the prospect of microcurrent therapy as a safe and efficacious non-pharmacological strategy for Alzheimer's disease (AD), providing optimism to the countless individuals impacted by this debilitating ailment. These results contribute to the developments of an innovative clinical protocol for AD and recovery from neurological injury, underscoring the significance of investigating unconventional therapeutic approaches for addressing this complex condition.

5.
Biomedicines ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275419

RESUMO

Multiple myeloma (MM) is a hematological malignancy caused by malignant proliferation of plasma cells in bone marrow. Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents. However, MM remains an incurable neoplastic plasma cell disorder. In addition, almost all MM patients inevitably relapse due to drug resistance. Chimeric antigen receptor (CAR)-modified NK cells represent a promising immunotherapeutic modality for cancer treatment. In this study, NK92 cells were engineered to express the third generation of BCMA CAR. In vitro, BCMA CAR-engineered NK92 cells displayed higher cytotoxicity and produced more cytokines such as IFN-γ and granzyme B than NK92 cells when they were co-cultured with MM cell lines. Furthermore, BCMA CAR-engineered NK92 cells released significantly higher amounts of cytokines and showed higher cytotoxicity when they were exposed to primary cells isolated from MM patients. The cytotoxicity of BCMA CAR NK92 cells was enhanced after MM cells were treated with bortezomib. Additionally, BCMA CAR NK92 cells exhibited potent antitumor activities in subcutaneous tumor models of MM. These results demonstrate that regional administration of BCMA CAR NK92 cells is a potentially promising strategy for treating MM.

6.
Neuropediatrics ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995745

RESUMO

BACKGROUND: Teenagers with epilepsy require special attention to ensure a successful treatment journey. Our objective was to delineate the clinical characteristics of adolescent-onset epilepsy (AOE) and investigate the predictive factors influencing first-year seizure freedom. METHODS: We retrospectively analyzed the medical records of patients whose first seizure occurred between the ages of 10 and 19 years and who received antiseizure medication (ASM) treatment for at least 12 months. RESULTS: A total of 67 patients were included, with an average age of 13.5 ± 2.3 years at the onset of their first seizure. The average follow-up period was 45.2 ± 16.9 months, and comorbid conditions were present in 23 patients (34.3%). The majority of the patient population (83.6%) was affected by generalized epilepsy. The most common epilepsy syndrome was epilepsy with generalized tonic-clonic seizures alone at 70.1% (juvenile myoclonic epilepsy 11.9%, juvenile absence epilepsy 1.5%). Regarding ASM treatment, 31 patients (46.3%) received monotherapy, and 28 (41.8%) received dual therapy. Five patients (7.5%) encountered issues related to medication adherence. First-year seizure freedom was observed in 42 patients (62.7%). In multivariate analysis, a negative family history of epilepsy (odds ratio 12.1, 95% confidence interval 1.27-115.44, p = 0.030) was identified as a strong predictive factor of first-year seizure freedom, along with ASM monotherapy (odds ratio 3.99, 95% confidence interval 1.05-15.21, p = 0.043). CONCLUSION: These findings suggest that AOE typically exhibits effective control of seizures. A negative family history of epilepsy and ASM monotherapy emerges as robust predictor of achieving favorable outcomes within the early stage of treatment.

8.
Knee Surg Sports Traumatol Arthrosc ; 31(12): 5799-5811, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940662

RESUMO

PURPOSE: This study aimed to determine whether the repair of a medial meniscus posterior root tear (MMPRT) is effective for MMPRT healing, cartilage regeneration, and clinical outcomes in opening wedge high tibial osteotomy (OWHTO). METHODS: This retrospective study included 80 patients who underwent OWHTO and subsequent second-look arthroscopy. The patients were divided into OWHTO-with-MMPRT-repair (n = 40) and OWHTO alone (n = 40) groups, and the healing rates (complete/partial/failure) were compared. Each group was further divided into over- and under-corrected subgroups to compare healing rates. The International Cartilage Repair Society (ICRS) grade, cartilage defect size, Koshino stage, ICRS cartilage repair assessment score of the medial femoral condyle (MFC), and International Knee Documentation Committee (IKDC) scores between the OWHTO-with-MMPRT-repair and OWHTO alone groups were compared according to whether microfracture was performed on the MFC. RESULTS: The overall healing rate of the MMPRT was higher in the OWHTO-with-MMPRT-repair group than that in the OWHTO alone group (P < 0.001). In addition, in the subgroup analysis, no difference in the MMPRT healing rate between the over-correction and under-correction groups when MMPRT repair was performed (n.s). In contrast, without MMPRT repair, the healing rate was lower in the under-correction group than that in the over-correction group (P = 0.03). Cartilage regeneration of the OWHTO-with-MMPRT-repair group was superior to that of the OWHTO alone group (P < 0.05). The IKDC subjective scores of the OWHTO-with-MMPRT-repair and OWHTO alone groups were 34.5 and 33.1 before surgery (n.s) and 50 and 47.2 at one year after surgery, respectively (n.s). These differences between the two groups for cartilage regeneration and IKDC subjective scores showed the same pattern regardless of microfractures. CONCLUSIONS: MMPRT repair during OWHTO might improve MMPRT healing, even with under-correction, and cartilage regeneration of MFC, regardless of microfracture. However, OWHTO with MMPRT repair might not improve short-term clinical outcomes compared to OWHTO alone. Further randomized clinical trials are necessary. LEVEL OF EVIDENCE: III, Retrospective cohort study.


Assuntos
Cartilagem Articular , Fraturas de Estresse , Osteoartrite do Joelho , Humanos , Meniscos Tibiais/cirurgia , Estudos Retrospectivos , Cartilagem Articular/cirurgia , Osteoartrite do Joelho/cirurgia , Osteotomia , Artroscopia , Regeneração
9.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003456

RESUMO

Radiation-induced lung fibrosis (RILF) is a common complication of radiotherapy in lung cancer. However, to date no effective treatment has been developed for this condition. NXC736 is a novel small-molecule compound that inhibits NLRP3, but its effect on RILF is unknown. NLRP3 activation is an important trigger for the development of RILF. Thus, we aimed to evaluate the therapeutic effect of NXC736 on lung fibrosis inhibition using a RILF animal model and to elucidate its molecular signaling pathway. The left lungs of mice were irradiated with a single dose of 75 Gy. We observed that NXC736 treatment inhibited collagen deposition and inflammatory cell infiltration in irradiated mouse lung tissues. The damaged lung volume, evaluated by magnetic resonance imaging, was lower in NXC736-treated mice than in irradiated mice. NXC736-treated mice exhibited significant changes in lung function parameters. NXC736 inhibited inflammasome activation by interfering with the NLRP3-ASC-cleaved caspase-1 interaction, thereby reducing the expression of IL-1ß and blocking the fibrotic pathway. In addition, NXC736 treatment reduced the expression of epithelial-mesenchymal transition markers such as α-SMA, vimentin, and twist by blocking the Smad 2,3,4 signaling pathway. These data suggested that NXC736 is a potent therapeutic agent against RILF.


Assuntos
Fibrose Pulmonar , Lesões por Radiação , Camundongos , Animais , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pulmão/patologia , Fibrose , Inflamassomos/metabolismo , Lesões por Radiação/metabolismo , Transdução de Sinais , Síndrome da Fibrose por Radiação
10.
Nat Commun ; 14(1): 7744, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008810

RESUMO

Transfer printing of inorganic thin-film semiconductors has attracted considerable attention to realize high-performance soft electronics on unusual substrates. However, conventional transfer technologies including elastomeric transfer printing, laser-assisted transfer, and electrostatic transfer still have challenging issues such as stamp reusability, additional adhesives, and device damage. Here, a micro-vacuum assisted selective transfer is reported to assemble micro-sized inorganic semiconductors onto unconventional substrates. 20 µm-sized micro-hole arrays are formed via laser-induced etching technology on a glass substrate. The vacuum controllable module, consisting of a laser-drilled glass and hard-polydimethylsiloxane micro-channels, enables selective modulation of micro-vacuum suction force on microchip arrays. Ultrahigh adhesion switchability of 3.364 × 106, accomplished by pressure control during the micro-vacuum transfer procedure, facilitates the pick-up and release of thin-film semiconductors without additional adhesives and chip damage. Heterogeneous integration of III-V materials and silicon is demonstrated by assembling microchips with diverse shapes and sizes from different mother wafers on the same plane. Multiple selective transfers are implemented by independent pressure control of two separate vacuum channels with a high transfer yield of 98.06%. Finally, flexible micro light-emitting diodes and transistors with uniform electrical/optical properties are fabricated via micro-vacuum assisted selective transfer.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37681834

RESUMO

Among the various thermal stress indices, apparent temperature (AT) is closely related to public health indicators, and consequently is widely used by weather agencies around the world. Therefore, in this paper we estimate the changes in AT and contributing components in Korea as a whole and in five major cities (Seoul, Gwanju, Daegu, Daejeon, and Busan) using national standard climate scenarios based on the coupled model inter-comparison project (CMIP6). In the present day, high AT occurs in major cities due to high temperature (TAS) and relative humidity (RH). Our findings reveal that even when TAS is relatively low, large AT occurs with higher humidity. Notably, in future warmer climate conditions, high AT may first appear in the five major cities and then extend to the surrounding areas. An increase in TAS and RH during the pre-hot season (March to June) may lead to earlier occurrence of thermal risks in future warmer climate conditions and more frequent occurrence of high thermal stress events. Our study can serve as a reference for future information on thermal risk changes in Korea. Considering those who have not adapted to high temperature environments, our findings imply that thermal risks will become more serious and that heat adaptation strategies will be needed during the pre-hot season under future warmer climate conditions.


Assuntos
Clima , Humanos , Umidade , Estações do Ano , Seul , Temperatura Alta
12.
Nanomicro Lett ; 15(1): 191, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532956

RESUMO

Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm-3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g-1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.

13.
ACS Appl Mater Interfaces ; 15(27): 32201-32214, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384534

RESUMO

Genetically engineered fusion polypeptides have been investigated to introduce unique bio-functionality and improve some therapeutic activity for anti-angiogenesis. We report herein that stimuli-responsive, vascular endothelial growth factor receptor 1 (VEGFR1) targeting fusion polypeptides composed of a VEGFR1 (fms-like tyrosine kinase-1 (Flt1)) antagonist, an anti-Flt1 peptide, and a thermally responsive elastin-based polypeptide (EBP) were rationally designed at the genetic level, biosynthesized, and purified by inverse transition cycling to develop potential anti-angiogenic fusion polypeptides to treat neovascular diseases. A series of hydrophilic EBPs with different block lengths were fused with an anti-Flt1 peptide, forming anti-Flt1-EBPs, and the effect of EBP block length on their physicochemical properties was examined. While the anti-Flt1 peptide decreased phase-transition temperatures of anti-Flt1-EBPs, compared with EBP blocks, anti-Flt1-EBPs were soluble under physiological conditions. The anti-Flt1-EBPs dose dependently inhibited the binding of VEGFR1 against vascular endothelial growth factor (VEGF) as well as tube-like network formation of human umbilical vein endothelial cells under VEGF-triggered angiogenesis in vitro because of the specific binding between anti-Flt1-EBPs and VEGFR1. Furthermore, the anti-Flt1-EBPs suppressed laser-induced choroidal neovascularization in a wet age-related macular degeneration mouse model in vivo. Our results indicate that anti-Flt1-EBPs as VEGFR1-targeting fusion polypeptides have great potential for efficacious anti-angiogenesis to treat retinal-, corneal-, and choroidal neovascularization.


Assuntos
Neovascularização de Coroide , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Crescimento do Endotélio Vascular
14.
J Pain Res ; 16: 921-931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960464

RESUMO

Purpose: Multiple studies have attempted to demonstrate the benefits of augmented reality (AR)-assisted navigation systems in surgery. Lumbosacral transforaminal epidural injection is an effective treatment commonly used in patients with radiculopathy due to spinal degenerative pathologies. However, few studies have applied AR-assisted navigation systems to this procedure. The study aimed to investigate the safety and effectiveness of an AR-assisted navigation system for transforaminal epidural injection. Patients and Methods: Through a real-time tracking system and a wireless network to the head-mounted display, computed tomography images of the spine and the path of a spinal needle to the target were visualized on a torso phantom with respiration movements installed. From L1/L2 to L5/S1, needle insertions were performed using an AR-assisted system on the left side of the phantom, and the conventional method was performed on the right side. Results: The procedure duration was approximately three times shorter, and the number of radiographs required was reduced in the experimental group compared to the control group. The distance from the needle tips to the target areas in the plan showed no significant difference between the two groups. (AR group 1.7 ± 2.3mm, control group 3.2 ± 2.8mm, P value 0.067). Conclusion: An AR-assisted navigation system may be used to reduce the time required for spinal interventions and ensure the safety of patients and physicians in view of radiation exposure. Further studies are essential to apply AR-assisted navigation systems to spine interventions.

15.
Adv Mater ; 35(26): e2301627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36960816

RESUMO

Wearable blood-pressure sensors have recently attracted attention as healthcare devices for continuous non-invasive arterial pressure (CNAP) monitoring. However, the accuracy of wearable blood-pressure (BP) monitoring devices has been controversial due to the low signal quality of sensors, the absence of an accurate transfer function to convert the sensor signals into BP values, and the lack of clinical validation regarding measurement precision. Here, a wearable piezoelectric blood-pressure sensor (WPBPS) is reported, which achieves a high normalized sensitivity (0.062 kPa-1 ), and fast response time (23 ms) for CNAP monitoring. The transfer function of a linear regression model is designed, offering a simple solution to convert the flexible piezoelectric sensor signals into BP values. In order to verify the measurement accuracy of WPBPS, clinical trials are performed on 35 subjects aged from 20 to 80 s after screening. The mean difference between the WPBPS and a commercial sphygmomanometer of 175 BP data pairs is -0.89 ± 6.19 and -0.32 ± 5.28 mmHg for systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively. By building a WPBPS-embedded wristwatch, the potentially promising use of a convenient, portable, continuous BP monitoring system for cardiovascular disease diagnosis is demonstrated.


Assuntos
Pressão Arterial , Dispositivos Eletrônicos Vestíveis , Humanos , Pressão Sanguínea/fisiologia , Pressão Arterial/fisiologia , Determinação da Pressão Arterial , Monitores de Pressão Arterial
16.
J Mater Chem B ; 11(8): 1692-1704, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723160

RESUMO

Incorporating stimuli-responsive block copolymers to hierarchical metallic nanoparticles (MNPs) is of particular interest due to their tunable plasmonic properties responding to environmental stimuli. We herein report thermo-responsive plasmonic core-satellite hybrid nanostructures with tunable nanogaps as surface-enhanced Raman scattering (SERS) nanotags. Two different diblock copolymers with opposite charges, poly(acrylic acid-b-N-isopropylacrylamide) (p(AAc-b-NIPAM)) and poly(N,N-dimethylaminoethyl methacrylate-b-N-isopropylacrylamide) (p(DMAEMA-b-NIPAM)), were synthesized. The negatively charged p(AAc-b-NIPAM)s were bound to gold nanospheres (GNSs), while the positively charged p(DMAEMA-b-NIPAM)s were conjugated to gold nanorods (GNRs) via gold-sulfur bonds. When p(AAc-b-NIPAM)-GNSs and p(DMAEMA-b-NIPAM)-GNRs were electrostatically complexed, plasmonic hybrid nanostructures consisting of both GNS satellites and a GNR core were formed. Dynamic tuning of electromagnetic coupling of their nanogaps was achieved via a temperature-triggered conformational change of p(NIPAM) blocks. Furthermore, a sandwich-type immunoassay for the detection of immunoglobulin G was performed to demonstrate these core-satellites as potential SERS nanotags. Our results showed that these plasmonic core-satellites with stimuli-responsiveness are promising for SERS-based biosensing applications.


Assuntos
Nanoestruturas , Acrilamidas , Polímeros , Ouro/química
17.
Cell Death Discov ; 9(1): 7, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639705

RESUMO

Metastatic colorectal cancer (CRC) remains a substantial problem for mortality and requires screening and early detection efforts to increase survival. Epithelial-mesenchymal transition (EMT) and circulation of tumor cells in the blood play important roles in metastasis. To identify a novel target for metastasis of CRC, we conducted a gene microarray analysis using extracted RNA from the blood of preclinical models. We found that NCK-associated protein 1 (NCKAP1) was significantly increased in the blood RNA of patient-derived xenograft (PDX) models of colon cancer. In the NCKAP1 gene knockdown-induced human colon cancer cell lines HCT116 and HT29, there was a reduced wound healing area and significant inhibition of migration and invasion. As the result of marker screening for cytoskeleton and cellular interactions, CRC treated with siRNA of NCKAP1 exhibited significant induction of CDH1 and phalloidin expression, which indicates enhanced adherent cell junctions and cytoskeleton. In HCT116 cells with a mesenchymal state induced by TGFß1, metastasis was inhibited by NCKAP1 gene knockdown through the inhibition of migration, and there was increased CTNNB1 expression and decreased FN expression. We established metastasis models for colon cancer to liver transition by intrasplenic injection shRNA of NCKAP1-transfected HCT116 cells or by implanting tumor tissue generated with the cells on cecal pouch. In metastasis xenograft models, tumor growth and liver metastasis were markedly reduced. Taken together, these data demonstrate that NCKAP1 is a novel gene regulating EMT that can contribute to developing a diagnostic marker for the progression of metastasis and new therapeutics for metastatic CRC treatment.

18.
Adv Healthc Mater ; 12(1): e2201796, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189834

RESUMO

Wearable light-emitting diode (LED)-based phototherapeutic devices have recently attracted attention as skin care tools for wrinkles, acne, and hyperpigmentation. However, the therapeutic effectiveness and safety of LED stimulators are still controversial due to their inefficient light transfer, high heat generation, and non-uniform spot irradiation. Here, a wearable surface-lighting micro-LED (SµLED) photostimulator is reported for skin care and cosmetic applications. The SµLEDs, consisting of a light diffusion layer (LDL), 900 thin film µLEDs, and polydimethylsiloxane (PDMS), achieve uniform surface-lighting in 2 × 2 cm2 -sized area with 100% emission yields. The SµLEDs maximize photostimulation effectiveness on the skin surface by uniform irradiation, high flexibility, and thermal stability. The SµLED's effect on melanogenesis inhibition is evaluated via in vitro and in vivo experiments to human skin equivalents (HSEs) and mouse dorsal skin, respectively. The anti-melanogenic effect of SµLEDs is confirmed by significantly reduced levels of melanin contents, melan-A, tyrosinase, and microphthalmia-associated transcription factor (MITF), compared to a conventional LED (CLED) stimulator.


Assuntos
Iluminação , Dispositivos Eletrônicos Vestíveis , Animais , Camundongos , Humanos , Melaninas , Pele , Monofenol Mono-Oxigenase
19.
Korean J Anesthesiol ; 76(3): 213-226, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36323305

RESUMO

BACKGROUND: Since the onset of the coronavirus disease 2019 pandemic, virtual simulation has emerged as an alternative to traditional teaching methods as it can be employed within the recently established contact-minimizing guidelines. This prospective education study aimed to develop a virtual reality simulator for a lumbar transforaminal epidural block (LTFEB) and demonstrate its efficacy. METHODS: We developed a virtual reality simulator using patient image data processing, virtual X-ray generation, spatial registration, and virtual reality technology. For a realistic virtual environment, a procedure room, surgical table, C-arm, and monitor were created. Using the virtual C-arm, the X-ray images of the patient's anatomy, the needle, and indicator were obtained in real-time. After the simulation, the trainees could receive feedback by adjusting the visibility of structures such as skin and bones. The training of LTFEB using the simulator was evaluated using 20 inexperienced trainees. The trainees' procedural time, rating score, number of C-arm taken, and overall satisfaction were recorded as primary outcomes. RESULTS: The group using the simulator showed a higher global rating score (P = 0.014), reduced procedural time (P = 0.025), reduced number of C-arm uses (P = 0.001), and higher overall satisfaction score (P = 0.007). CONCLUSIONS: We created an accessible and effective virtual reality simulator that can be used to teach inexperienced trainees LTFEB without radiation exposure. The results of this study indicate that the proposed simulator will prove to be a useful aid for teaching LTFEB.


Assuntos
COVID-19 , Realidade Virtual , Humanos , Estudos Prospectivos , Simulação por Computador , Competência Clínica
20.
Trends Hear ; 26: 23312165221141143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36464791

RESUMO

Auditory selective attention is a crucial top-down cognitive mechanism for understanding speech in noise. Cochlear implant (CI) users display great variability in speech-in-noise performance that is not easily explained by peripheral auditory profile or demographic factors. Thus, it is imperative to understand if auditory cognitive processes such as selective attention explain such variability. The presented study directly addressed this question by quantifying attentional modulation of cortical auditory responses during an attention task and comparing its individual differences with speech-in-noise performance. In our attention experiment, participants with CI were given a pre-stimulus visual cue that directed their attention to either of two speech streams and were asked to select a deviant syllable in the target stream. The two speech streams consisted of the female voice saying "Up" five times every 800 ms and the male voice saying "Down" four times every 1 s. The onset of each syllable elicited distinct event-related potentials (ERPs). At each syllable onset, the difference in the amplitudes of ERPs between the two attentional conditions (attended - ignored) was computed. This ERP amplitude difference served as a proxy for attentional modulation strength. Our group-level analysis showed that the amplitude of ERPs was greater when the syllable was attended than ignored, exhibiting that attention modulated cortical auditory responses. Moreover, the strength of attentional modulation showed a significant correlation with speech-in-noise performance. These results suggest that the attentional modulation of cortical auditory responses may provide a neural marker for predicting CI users' success in clinical tests of speech-in-noise listening.


Assuntos
Implante Coclear , Implantes Cocleares , Feminino , Masculino , Humanos , Fala , Potenciais Evocados Auditivos , Percepção Auditiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...